Two New Glycosides from the Roots of Ranunculus ternatus

Jing Kui TIAN*, Feng SUN, Yi Yu CHENG

Deptment of Chinese Medicine Science & Engineering, Zhejiang University, Hangzhou 310027

Abstract: Two new glycosides named as ternatoside A 1 and ternatoside B 2 were isolated from the roots of *Ranunculus ternatus*, the structures were determined by 1D and 2D NMR, ESI-MS techniques, and chemical methods.

Keywords: Ranunculus ternatus, ternatoside A and ternatoside B.

Ranunculus ternatus Thunb. is a plant of Ranunculus genus used for treatment of tuberculosis¹. Some fatty acid esters and γ -keto- δ -valerolactone have been isolated from this plant^{2,3}. In this paper, we reported two new glycosides named ternatoside A 1 and B 2. Their structures were identified on the basis of spectroscopic and chemical methods.

Compound **1** was obtained as a colorless gum, and gave positive result to Molish test. In the positive and negative ESIMS, it showed quasi-molecular ion peaks at m/z 373.2 [M+Na]⁺, 189.2 [M-162+H]⁺ and 349.3 [M-H]⁻, respectively. Its molecular formula $C_{15}H_{26}O_9$ was deduced from HRFABMS (373.1426 [M+Na]⁺, calcd. 373.1475), ¹³CNMR and MS data. Glucose was detected after the acid hydrolysis and compared with standard sugar on TLC. The ¹H, ¹³CNMR and HMQC indicated that this compound possesses three methylenes, one butanol, one carbonyl ketone, one carbonyl ester, and one (β -D) glucosyl group (**Table 1**). Analysis of ¹H-¹HCOSY and HMBC spectra enabled deduction the structure. In HMBC spectrum of **1**, ¹³C-¹H long range correlation signals were found between C-1 and H-2, H-3, H-6; C-4 and H-2, H-3, H-5; C-3 and H-5; The anomeric proton of β -D-glucosyl group at δ 4. 91 (d, 1H, J=7.5 Hz) was correlated to C-5 of aglycone (**Figure 1**). In ¹H-¹HCOSY spectrum of **1**, correlation signals were found between H-2 and H-3; H-6 and H-7; H-7 and H-8; H-8 and H-9. Thus compound **1** was identified as 4-carbonyl-(O- β -D-glucopyranosyl)-pentanoic acid-1-O-butyl ester. It is a new compound, named as ternatoside A.

Compound **2** was obtained as the brown gum, and gave positive result to Molish test. In the positive and negative ESIMS, it showed *quasi*-molecular ion peaks at m/z 439.2 [M+Na]⁺, 255.2 [M-162+1]⁺ and 415.3 [M-H]⁻, respectively. Its molecular formula $C_{19}H_{28}O_{10}$ was deduced from HRFABMS (439.1551 [M+Na]⁺, calcd. 439.1580), ¹³CNMR and MS data. Glucose was detected after the acid hydrolysis and compared

.

^{*} E-mail: tjk@zju.edu.cn

Table 1 NMR spectral data of **1** (1 H, 500 MHz; 13 C, 125MHz; in DMSO- d_{6} , δ ppm, J Hz)

No.	δ_{H}	δ_{C}	No.	δ_{H}	δ_{C}
1		172.9	9	0.87(t, 3H, 7.5)	14.0
2	2.48 (t, 2H, 6.5)	27.7	1′	4.91(d, 1H, 7.5)	103.3
3	2.78(t, 2H, 6.5)	34.1	2'	3.04(t, 1H, 7.5)	74.0
4		207.9	3′	3.17(t, 1H, 7.5)	77.2
5	4.30, 4.22(d, 2H, 17.0)	73.7	4′	3.07(t, 1H, 7.5)	70.7
6	3.99(t, 2H, 7.5)	64.2	5′	3.25(m, 1H, 7.5)	77.5
7	1.52(m, 2H, 7.5)	30.8	6′	3.99, 3.66(dd, 2H, 13.5,7.5)	61.7
8	1.31(m, 2H, 7.5)	19.1			

Table 2 NMR spectral data of 2 (1 H, 500 MHz; 13 C, 125MHz; in DMSO- d_6 , δ ppm, J Hz)

No.	δ_{H}	δ_{C}	No.	δ_{H}	δ_{C}
1		174.3	4′		146.0
2	4.16 (t, 1H, 6.0)	72.0	5′	6.67(1H, br.)	116.1
3	2.81,2.69(dd, 2H, 14.5,6.0)	40.0	6'	6.69(1H, br.)	124.4
4	3.96(t, 2H, 7.0)	64.3	1"	4.61(d, 1H, 7.5)	103.2
5	1.49(m, 2H, 7.0)	30.8	2"	3.27(t, 1H, 7.5)	74.0
6	1.26(m, 2H, 7.0)	19.2	3"	3.25(t, 1H, 7.5)	76.6
7	0.89(t, 3H, 7.0)	14.2	4''	3.18(t, 1H, 7.5)	70.3
1′		129.0	5"	3.29(m, 1H, 7.5)	77.8
2'	6.95(1H, br.)	118.7	6"	3.72,3.63(dd, 2H, 11.7,7.5)	61.4
3′		145.5			

with the standard sugar on TLC. In 13 CNMR spectrum of **2(Table 2)**, 19 carbon signals including one methylene, one methine, one phenyl, one *n*-butanol, one (β -D) glucosyl group, one carbonyl ester groups were found. In the HMBC of compound **2**, 13 C- 1 H long range correlation signals were found between C-1 and H-2, H-3, H-4; C-3 and H-2, H-2', H-6'; C-1' and H-2, H-3, H-2', H-5', H-6'; C-4' and H-2', H-5', H-6'; The anomeric proton of β -D-glucosyl group at δ 4.61(d, 1H, J=7.5 Hz) was correlate to C-4' of phenyl (**Figure 1**). In 1 H- 1 HCOSY spectrum of **2**, correlation signals were found between H-2 and H-3; H-5' and H-6'; H-4 and H-5; H-5 and H-6; H-6 and H-7. Comparison of 13 CNMR data of **2** with that of the known (R)-3-[3-hydroxy-4-(-O- β -D-glucopyranosyl) phenyl]-2-hydroxypropanoic acid⁴, both compounds showed very similar 13 CNMR data, but **2** has a group of butanol signal and C-1 of **2** is up-shifted for 10.90 ppm, indicating that the carboxyl was esterified by butanol. Therefore, compound **2** was identified as (R)-3-[3-hydroxy-4-(O- β -D-glucopyranosyl)phenyl]-2-hydroxypropanoic acid butyl ester. It is a new compound, named as ternatoside B.

Figure 1 Key HMBC correlations of ternatoside A and B

ternatoside A

ternatoside B

Acknowledgments

This research was supported by the National Natural Science Foundation of China (Grant No. 30400584).

References

- S. H. Zhu, Commercial Science of Chinese Medical Materials, First edition, People Healthy Publishing House, Beijing, 1990, 212.
- D. Q. Jiang, X. M. Huang, *China Journal of Chinese Materia Medica*, **1993**, *18*(9), 550. X. M. Guo, Z. L. Zhou, Y. F. Hong, *Acta Pharm. Sin.*, **1995**, *30*(12), 931. T. Satake, *et al.*, *Chem. Pharm. Bull.*, **1999**, *47*, 1444.

Received 23 September, 2004